
MATH 53H - Solutions to Problem Set I

1. We will use separation of variables. Note that we can write the equation
as

x′ = −(x− 1

2
)2 − (h− 1

4
)

We distinguish the following three cases:

a. h < 1
4 . Let α = 1

2 +
√

1
4 − h and β = 1

2 −
√

1
4 − h. Then we have

x′ = −(x− α)(x− β)

Clearly there exist two constant solutions x(t) = α and x(t) = β. Hence
suppose that x(t0) 6= α, β for some t0 and by continuity for all t close to t0.
Then we have that

x′

x− β
− x′

x− α
= α− β

Integrating this from t0 to t we get

|x− β
x− α

| = e(α−β)(t−t0)|x(t0)− α
x(t0)− β

| = C ′e2
√

1/4−h·t

where C ′ is a non-zero constant. The quantity inside the absolute value is
continuous and does not vanish, hence preserves sign, and we can remove
the absolute value to obtain after some manipulation

x(t) =
1

2
+
√

1/4− h · Ce
2
√

1/4−h·t + 1

Ce2
√

1/4−h·t − 1

where C = ±C ′ a real non-zero constant.

b. h = 1
4 . We get x′ = −(x − 1

2)2. Arguing as in the previous case we get
the solutions x(t) = 1

2 and

x(t) =
1

2
+

1

t− C

for a constant C.

c. h > 1
4 . Then as in the above we get the solution

x(t) =
1

2
−
√
h− 1/4 · tan(

√
h− 1/4 · t+ C)
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for a constant C.

2. Write x(t) = y(t) + z(t), where x(t) is a solution of the given equation.
Then we have y′ + z′ = ay + az + f(t) and since y(t) is a solution of the
equation, we obtain z′ = az. This implies that

(e−atz)′ = e−at(z′ − az) = 0⇒ e−atz(t) = c⇒ z(t) = ceat

for a real constant c. Therefore we get x(t) = y(t) + ceat and conversely we
may check that this satisfies the equation for any c.

3. (a) Let b(t) =
∫ t
0 a(s)ds be an anti-derivative of a(t). Then if x(t) is a

solution of the equation we have

(e−b(t)x)′ = e−b(t)(x′ − b′x) = e−b(t)(x′ − ax) = 0⇒ e−b(t)x = c

⇒ x(t) = ceb(t) = ce
∫ t
0 a(s)ds

for some real constant c.

(b) It is easy to check that the given solution satisfies the equation for any
c ∈ R.

4. (a), (b) An obvious solution is x(t) = 0 for t ∈ R. Suppose now that
x(t0) 6= 0 for some t0. Then x(t) 6= 0 around t0 and therefore we obtain by
integrating

x′

x2
= 1⇒ 1

x(t)
− 1

x(t0)
= t− t0 ⇒ x(t) =

1

t− C

for a constant C ∈ R. Depending on whether t0 is greater or less than C,
the domain of definition is (C,+∞) or (−∞, C).

(c) Consider the equation x′ = π
2 (1+x2). We can use separation of variables

to find that the solution satisfying x(0) = 0 is given by x(t) = tan(πt2 ), which
is clearly defined only for −1 < t < 1.

5. By Exercise 3, we have that the general solution of the ODE is

x(t) = ce
∫ t
0 p(s)ds

Hence all solutions are periodic with period T when

x(t+ T ) = x(t)⇔
∫ t

0
p(s)ds =

∫ t+T

0
p(s)ds⇔

∫ t+T

t
p(s)ds = 0
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for all t. Let g(t) =
∫ t+T
t p(s)ds. Then we have g′(t) = p(t + T )− p(t) = 0

by the periodicity of p and thus g is constant. Therefore g(t) = g(0) =∫ T
0 p(s)ds = 0, as we want.

6. (i) We have pA(λ) = det(λI − A) = λ2 + 1, hence the eigenvalues of A
are ±i. Therefore we know that the solutions are spanned by <(eit) = cos t
and =(eit) = sin t. These are both 2π-periodic and thus the same is true for
all the solutions.

(ii) Letting S =

(
a b
c d

)
and solving explicitly we get a = 2d, b+c+2d = 0.

Thus a solution is given by S =

(
2 −1
−1 1

)
. Note that

(
x y

)
S

(
x
y

)
= (x− y)2 + x2

which is positive unless x = y = 0. Hence S is positive definite.

(iii) Let us denote f(t) = Q(x(t)). Then we have

f ′(t) = x′
T
Sx+ xTSx′ = (Ax)TSx+ xTSAx =

= xTATSx+ xTSAx = xT (ATS + SA)x = 0

by the definition of S. Thus f is constant, as we want.

(iv) Using part (iii), it suffices to show that the level sets of f are ellipses.

The eigenvalues of S are λ1 = 3+
√
5

2 , λ2 = 3−
√
5

2 with corresponding eigen-

vectors v1 =

(
1

1−
√
5

2

)
, v2 =

(
1

1+
√
5

2

)
.

Note that the eigenvectors are orthogonal, hence if we normalize them and
use them as columns of a matrix P , P will be orthogonal, i.e. P T = P−1.

Moreover we will have S = P T
(
λ1 0
0 λ2

)
P and thus

xTSx = (Px)T
(
λ1 0
0 λ2

)
(Px)

which implies that in the basis given by the eigenvectors the level sets of f are
given by the equation of an ellipse of the form λ1u

2+λ2v
2 = f(0) = Q(x(0))

(in the new coordinates). Hence, since P is orthogonal and therefore an
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isometry, the solution curve will be an ellipse in the original coordinates as
well.

From this discussion it is clear that the principal axes of the ellipse are in
the directions of v1 and v2 regardless of the initial condition. However their

lengths are given by 2
√

Q(x(0))
λ1

and 2
√

Q(x(0))
λ2

and thus depend on the initial

condition x(0).
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